extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊D4)⋊1C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):1C2^2 | 192,1049 |
(C2×C3⋊D4)⋊2C22 = D4×D12 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):2C2^2 | 192,1108 |
(C2×C3⋊D4)⋊3C22 = D12⋊23D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):3C2^2 | 192,1109 |
(C2×C3⋊D4)⋊4C22 = D4⋊5D12 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):4C2^2 | 192,1113 |
(C2×C3⋊D4)⋊5C22 = C42⋊19D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):5C2^2 | 192,1119 |
(C2×C3⋊D4)⋊6C22 = C24.67D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):6C2^2 | 192,1145 |
(C2×C3⋊D4)⋊7C22 = S3×C22≀C2 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 24 | | (C2xC3:D4):7C2^2 | 192,1147 |
(C2×C3⋊D4)⋊8C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):8C2^2 | 192,1150 |
(C2×C3⋊D4)⋊9C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):9C2^2 | 192,1151 |
(C2×C3⋊D4)⋊10C22 = C24.46D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):10C2^2 | 192,1152 |
(C2×C3⋊D4)⋊11C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):11C2^2 | 192,1154 |
(C2×C3⋊D4)⋊12C22 = S3×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):12C2^2 | 192,1163 |
(C2×C3⋊D4)⋊13C22 = C6.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):13C2^2 | 192,1164 |
(C2×C3⋊D4)⋊14C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):14C2^2 | 192,1166 |
(C2×C3⋊D4)⋊15C22 = D12⋊19D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):15C2^2 | 192,1168 |
(C2×C3⋊D4)⋊16C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):16C2^2 | 192,1169 |
(C2×C3⋊D4)⋊17C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):17C2^2 | 192,1179 |
(C2×C3⋊D4)⋊18C22 = C6.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):18C2^2 | 192,1212 |
(C2×C3⋊D4)⋊19C22 = C4⋊C4⋊28D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):19C2^2 | 192,1215 |
(C2×C3⋊D4)⋊20C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):20C2^2 | 192,1216 |
(C2×C3⋊D4)⋊21C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):21C2^2 | 192,1225 |
(C2×C3⋊D4)⋊22C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):22C2^2 | 192,1233 |
(C2×C3⋊D4)⋊23C22 = D12⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):23C2^2 | 192,1235 |
(C2×C3⋊D4)⋊24C22 = C42⋊22D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):24C2^2 | 192,1237 |
(C2×C3⋊D4)⋊25C22 = S3×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):25C2^2 | 192,1273 |
(C2×C3⋊D4)⋊26C22 = C42⋊28D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):26C2^2 | 192,1274 |
(C2×C3⋊D4)⋊27C22 = D12⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):27C2^2 | 192,1276 |
(C2×C3⋊D4)⋊28C22 = C24.52D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):28C2^2 | 192,1364 |
(C2×C3⋊D4)⋊29C22 = C24.53D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):29C2^2 | 192,1365 |
(C2×C3⋊D4)⋊30C22 = C6.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):30C2^2 | 192,1388 |
(C2×C3⋊D4)⋊31C22 = C6.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):31C2^2 | 192,1389 |
(C2×C3⋊D4)⋊32C22 = S3×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 24 | 8+ | (C2xC3:D4):32C2^2 | 192,1524 |
(C2×C3⋊D4)⋊33C22 = D6.C24 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | 8- | (C2xC3:D4):33C2^2 | 192,1525 |
(C2×C3⋊D4)⋊34C22 = C2×D6⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):34C2^2 | 192,1046 |
(C2×C3⋊D4)⋊35C22 = C2×Dic3⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):35C2^2 | 192,1048 |
(C2×C3⋊D4)⋊36C22 = C23⋊4D12 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):36C2^2 | 192,1052 |
(C2×C3⋊D4)⋊37C22 = C42⋊14D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):37C2^2 | 192,1106 |
(C2×C3⋊D4)⋊38C22 = C24⋊7D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):38C2^2 | 192,1148 |
(C2×C3⋊D4)⋊39C22 = C24⋊8D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):39C2^2 | 192,1149 |
(C2×C3⋊D4)⋊40C22 = D12⋊20D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):40C2^2 | 192,1171 |
(C2×C3⋊D4)⋊41C22 = C6.1212+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):41C2^2 | 192,1213 |
(C2×C3⋊D4)⋊42C22 = C2×C12⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):42C2^2 | 192,1349 |
(C2×C3⋊D4)⋊43C22 = C2×C23⋊2D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):43C2^2 | 192,1358 |
(C2×C3⋊D4)⋊44C22 = C2×D6⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):44C2^2 | 192,1359 |
(C2×C3⋊D4)⋊45C22 = D4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):45C2^2 | 192,1360 |
(C2×C3⋊D4)⋊46C22 = C2×C23.14D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):46C2^2 | 192,1361 |
(C2×C3⋊D4)⋊47C22 = C2×C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):47C2^2 | 192,1362 |
(C2×C3⋊D4)⋊48C22 = C24⋊12D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):48C2^2 | 192,1363 |
(C2×C3⋊D4)⋊49C22 = C2×C24⋊4S3 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):49C2^2 | 192,1399 |
(C2×C3⋊D4)⋊50C22 = C22×S3×D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):50C2^2 | 192,1514 |
(C2×C3⋊D4)⋊51C22 = C22×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4):51C2^2 | 192,1515 |
(C2×C3⋊D4)⋊52C22 = C2×D4⋊6D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):52C2^2 | 192,1516 |
(C2×C3⋊D4)⋊53C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):53C2^2 | 192,1520 |
(C2×C3⋊D4)⋊54C22 = C2×D4○D12 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4):54C2^2 | 192,1521 |
(C2×C3⋊D4)⋊55C22 = C6.C25 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | 4 | (C2xC3:D4):55C2^2 | 192,1523 |
(C2×C3⋊D4)⋊56C22 = C22×C4○D12 | φ: trivial image | 96 | | (C2xC3:D4):56C2^2 | 192,1513 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊D4).1C22 = C23⋊C4⋊5S3 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | 8- | (C2xC3:D4).1C2^2 | 192,299 |
(C2×C3⋊D4).2C22 = C23⋊D12 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 24 | 8+ | (C2xC3:D4).2C2^2 | 192,300 |
(C2×C3⋊D4).3C22 = C23.5D12 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | 8- | (C2xC3:D4).3C2^2 | 192,301 |
(C2×C3⋊D4).4C22 = S3×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 24 | 8+ | (C2xC3:D4).4C2^2 | 192,302 |
(C2×C3⋊D4).5C22 = C24⋊6D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 24 | 4 | (C2xC3:D4).5C2^2 | 192,591 |
(C2×C3⋊D4).6C22 = C22⋊C4⋊D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | 4 | (C2xC3:D4).6C2^2 | 192,612 |
(C2×C3⋊D4).7C22 = C24.41D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).7C2^2 | 192,1053 |
(C2×C3⋊D4).8C22 = C24.42D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).8C2^2 | 192,1054 |
(C2×C3⋊D4).9C22 = C42⋊12D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).9C2^2 | 192,1086 |
(C2×C3⋊D4).10C22 = C42.96D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).10C2^2 | 192,1090 |
(C2×C3⋊D4).11C22 = C42.99D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).11C2^2 | 192,1093 |
(C2×C3⋊D4).12C22 = C42.100D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).12C2^2 | 192,1094 |
(C2×C3⋊D4).13C22 = C42.104D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).13C2^2 | 192,1099 |
(C2×C3⋊D4).14C22 = Dic6⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).14C2^2 | 192,1112 |
(C2×C3⋊D4).15C22 = D4⋊6D12 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).15C2^2 | 192,1114 |
(C2×C3⋊D4).16C22 = C42⋊18D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).16C2^2 | 192,1115 |
(C2×C3⋊D4).17C22 = C42.113D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).17C2^2 | 192,1117 |
(C2×C3⋊D4).18C22 = C42.115D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).18C2^2 | 192,1120 |
(C2×C3⋊D4).19C22 = C42.116D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).19C2^2 | 192,1121 |
(C2×C3⋊D4).20C22 = C42.117D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).20C2^2 | 192,1122 |
(C2×C3⋊D4).21C22 = C42.119D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).21C2^2 | 192,1124 |
(C2×C3⋊D4).22C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).22C2^2 | 192,1153 |
(C2×C3⋊D4).23C22 = C12⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).23C2^2 | 192,1155 |
(C2×C3⋊D4).24C22 = C6.322+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).24C2^2 | 192,1156 |
(C2×C3⋊D4).25C22 = Dic6⋊20D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).25C2^2 | 192,1158 |
(C2×C3⋊D4).26C22 = C6.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).26C2^2 | 192,1160 |
(C2×C3⋊D4).27C22 = C4⋊C4⋊21D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).27C2^2 | 192,1165 |
(C2×C3⋊D4).28C22 = C6.722- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).28C2^2 | 192,1167 |
(C2×C3⋊D4).29C22 = C6.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).29C2^2 | 192,1170 |
(C2×C3⋊D4).30C22 = C6.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).30C2^2 | 192,1172 |
(C2×C3⋊D4).31C22 = C6.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).31C2^2 | 192,1173 |
(C2×C3⋊D4).32C22 = C6.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).32C2^2 | 192,1174 |
(C2×C3⋊D4).33C22 = C6.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).33C2^2 | 192,1175 |
(C2×C3⋊D4).34C22 = C6.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).34C2^2 | 192,1176 |
(C2×C3⋊D4).35C22 = C6.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).35C2^2 | 192,1178 |
(C2×C3⋊D4).36C22 = C6.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).36C2^2 | 192,1180 |
(C2×C3⋊D4).37C22 = C4⋊C4.187D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).37C2^2 | 192,1183 |
(C2×C3⋊D4).38C22 = C4⋊C4⋊26D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).38C2^2 | 192,1186 |
(C2×C3⋊D4).39C22 = C6.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).39C2^2 | 192,1202 |
(C2×C3⋊D4).40C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).40C2^2 | 192,1203 |
(C2×C3⋊D4).41C22 = C6.782- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).41C2^2 | 192,1204 |
(C2×C3⋊D4).42C22 = C6.252- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).42C2^2 | 192,1205 |
(C2×C3⋊D4).43C22 = C6.592+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).43C2^2 | 192,1206 |
(C2×C3⋊D4).44C22 = C6.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).44C2^2 | 192,1207 |
(C2×C3⋊D4).45C22 = C4⋊C4.197D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).45C2^2 | 192,1208 |
(C2×C3⋊D4).46C22 = S3×C22.D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).46C2^2 | 192,1211 |
(C2×C3⋊D4).47C22 = C6.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).47C2^2 | 192,1217 |
(C2×C3⋊D4).48C22 = C6.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).48C2^2 | 192,1219 |
(C2×C3⋊D4).49C22 = C6.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).49C2^2 | 192,1220 |
(C2×C3⋊D4).50C22 = C6.652+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).50C2^2 | 192,1221 |
(C2×C3⋊D4).51C22 = C6.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).51C2^2 | 192,1222 |
(C2×C3⋊D4).52C22 = C6.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).52C2^2 | 192,1223 |
(C2×C3⋊D4).53C22 = C6.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).53C2^2 | 192,1224 |
(C2×C3⋊D4).54C22 = C6.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).54C2^2 | 192,1226 |
(C2×C3⋊D4).55C22 = C42.233D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).55C2^2 | 192,1227 |
(C2×C3⋊D4).56C22 = C42.137D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).56C2^2 | 192,1228 |
(C2×C3⋊D4).57C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).57C2^2 | 192,1229 |
(C2×C3⋊D4).58C22 = S3×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).58C2^2 | 192,1232 |
(C2×C3⋊D4).59C22 = C42.141D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).59C2^2 | 192,1234 |
(C2×C3⋊D4).60C22 = Dic6⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).60C2^2 | 192,1236 |
(C2×C3⋊D4).61C22 = C42⋊23D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).61C2^2 | 192,1238 |
(C2×C3⋊D4).62C22 = C42.234D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).62C2^2 | 192,1239 |
(C2×C3⋊D4).63C22 = C42.143D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).63C2^2 | 192,1240 |
(C2×C3⋊D4).64C22 = C42.144D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).64C2^2 | 192,1241 |
(C2×C3⋊D4).65C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).65C2^2 | 192,1242 |
(C2×C3⋊D4).66C22 = C42.145D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).66C2^2 | 192,1243 |
(C2×C3⋊D4).67C22 = C42.160D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).67C2^2 | 192,1261 |
(C2×C3⋊D4).68C22 = C42⋊25D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).68C2^2 | 192,1263 |
(C2×C3⋊D4).69C22 = C42⋊26D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).69C2^2 | 192,1264 |
(C2×C3⋊D4).70C22 = C42.189D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).70C2^2 | 192,1265 |
(C2×C3⋊D4).71C22 = C42.161D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).71C2^2 | 192,1266 |
(C2×C3⋊D4).72C22 = C42.162D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).72C2^2 | 192,1267 |
(C2×C3⋊D4).73C22 = C42.163D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).73C2^2 | 192,1268 |
(C2×C3⋊D4).74C22 = C42.164D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).74C2^2 | 192,1269 |
(C2×C3⋊D4).75C22 = C42⋊27D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).75C2^2 | 192,1270 |
(C2×C3⋊D4).76C22 = C42.165D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).76C2^2 | 192,1271 |
(C2×C3⋊D4).77C22 = C42.238D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).77C2^2 | 192,1275 |
(C2×C3⋊D4).78C22 = Dic6⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).78C2^2 | 192,1277 |
(C2×C3⋊D4).79C22 = C42.168D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).79C2^2 | 192,1278 |
(C2×C3⋊D4).80C22 = C42⋊30D6 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).80C2^2 | 192,1279 |
(C2×C3⋊D4).81C22 = C6.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).81C2^2 | 192,1383 |
(C2×C3⋊D4).82C22 = C6.1082- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).82C2^2 | 192,1392 |
(C2×C3⋊D4).83C22 = C2×C23.6D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).83C2^2 | 192,513 |
(C2×C3⋊D4).84C22 = (C2×D12)⋊13C4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | 4 | (C2xC3:D4).84C2^2 | 192,565 |
(C2×C3⋊D4).85C22 = C42.276D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).85C2^2 | 192,1036 |
(C2×C3⋊D4).86C22 = C42.277D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).86C2^2 | 192,1038 |
(C2×C3⋊D4).87C22 = C2×Dic3⋊4D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).87C2^2 | 192,1044 |
(C2×C3⋊D4).88C22 = C24.35D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).88C2^2 | 192,1045 |
(C2×C3⋊D4).89C22 = C2×C23.9D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).89C2^2 | 192,1047 |
(C2×C3⋊D4).90C22 = C2×C23.11D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).90C2^2 | 192,1050 |
(C2×C3⋊D4).91C22 = C2×C23.21D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).91C2^2 | 192,1051 |
(C2×C3⋊D4).92C22 = C6.2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).92C2^2 | 192,1066 |
(C2×C3⋊D4).93C22 = C6.2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).93C2^2 | 192,1069 |
(C2×C3⋊D4).94C22 = C6.52- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).94C2^2 | 192,1072 |
(C2×C3⋊D4).95C22 = C6.112+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).95C2^2 | 192,1073 |
(C2×C3⋊D4).96C22 = C6.62- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).96C2^2 | 192,1074 |
(C2×C3⋊D4).97C22 = C42.188D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).97C2^2 | 192,1081 |
(C2×C3⋊D4).98C22 = C42.91D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).98C2^2 | 192,1082 |
(C2×C3⋊D4).99C22 = C42⋊10D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).99C2^2 | 192,1083 |
(C2×C3⋊D4).100C22 = C42⋊11D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).100C2^2 | 192,1084 |
(C2×C3⋊D4).101C22 = C42.92D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).101C2^2 | 192,1085 |
(C2×C3⋊D4).102C22 = C42.93D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).102C2^2 | 192,1087 |
(C2×C3⋊D4).103C22 = C42.94D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).103C2^2 | 192,1088 |
(C2×C3⋊D4).104C22 = C42.95D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).104C2^2 | 192,1089 |
(C2×C3⋊D4).105C22 = C42.97D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).105C2^2 | 192,1091 |
(C2×C3⋊D4).106C22 = C42.98D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).106C2^2 | 192,1092 |
(C2×C3⋊D4).107C22 = C4×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).107C2^2 | 192,1095 |
(C2×C3⋊D4).108C22 = C42.102D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).108C2^2 | 192,1097 |
(C2×C3⋊D4).109C22 = C4×S3×D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).109C2^2 | 192,1103 |
(C2×C3⋊D4).110C22 = C42⋊13D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).110C2^2 | 192,1104 |
(C2×C3⋊D4).111C22 = C42.108D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).111C2^2 | 192,1105 |
(C2×C3⋊D4).112C22 = C42.228D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).112C2^2 | 192,1107 |
(C2×C3⋊D4).113C22 = D12⋊24D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).113C2^2 | 192,1110 |
(C2×C3⋊D4).114C22 = Dic6⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).114C2^2 | 192,1111 |
(C2×C3⋊D4).115C22 = C42.229D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).115C2^2 | 192,1116 |
(C2×C3⋊D4).116C22 = C42.114D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).116C2^2 | 192,1118 |
(C2×C3⋊D4).117C22 = C42.118D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).117C2^2 | 192,1123 |
(C2×C3⋊D4).118C22 = Dic6⋊19D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).118C2^2 | 192,1157 |
(C2×C3⋊D4).119C22 = C6.1152+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).119C2^2 | 192,1177 |
(C2×C3⋊D4).120C22 = C6.162- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).120C2^2 | 192,1187 |
(C2×C3⋊D4).121C22 = C6.172- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).121C2^2 | 192,1188 |
(C2×C3⋊D4).122C22 = D12⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).122C2^2 | 192,1189 |
(C2×C3⋊D4).123C22 = D12⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).123C2^2 | 192,1190 |
(C2×C3⋊D4).124C22 = Dic6⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).124C2^2 | 192,1191 |
(C2×C3⋊D4).125C22 = Dic6⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).125C2^2 | 192,1192 |
(C2×C3⋊D4).126C22 = C6.1182+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).126C2^2 | 192,1194 |
(C2×C3⋊D4).127C22 = C6.522+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).127C2^2 | 192,1195 |
(C2×C3⋊D4).128C22 = C6.532+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).128C2^2 | 192,1196 |
(C2×C3⋊D4).129C22 = C6.202- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).129C2^2 | 192,1197 |
(C2×C3⋊D4).130C22 = C6.212- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).130C2^2 | 192,1198 |
(C2×C3⋊D4).131C22 = C6.222- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).131C2^2 | 192,1199 |
(C2×C3⋊D4).132C22 = C6.232- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).132C2^2 | 192,1200 |
(C2×C3⋊D4).133C22 = C6.772- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).133C2^2 | 192,1201 |
(C2×C3⋊D4).134C22 = C6.822- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).134C2^2 | 192,1214 |
(C2×C3⋊D4).135C22 = C6.622+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).135C2^2 | 192,1218 |
(C2×C3⋊D4).136C22 = C2×C23.28D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).136C2^2 | 192,1348 |
(C2×C3⋊D4).137C22 = C24.83D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).137C2^2 | 192,1350 |
(C2×C3⋊D4).138C22 = C6.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).138C2^2 | 192,1375 |
(C2×C3⋊D4).139C22 = C6.452- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).139C2^2 | 192,1376 |
(C2×C3⋊D4).140C22 = (C2×D4)⋊43D6 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 48 | | (C2xC3:D4).140C2^2 | 192,1387 |
(C2×C3⋊D4).141C22 = C6.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).141C2^2 | 192,1390 |
(C2×C3⋊D4).142C22 = (C2×C12)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).142C2^2 | 192,1391 |
(C2×C3⋊D4).143C22 = C6.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).143C2^2 | 192,1393 |
(C2×C3⋊D4).144C22 = C2×Q8○D12 | φ: C22/C2 → C2 ⊆ Out C2×C3⋊D4 | 96 | | (C2xC3:D4).144C2^2 | 192,1522 |
(C2×C3⋊D4).145C22 = C4×C4○D12 | φ: trivial image | 96 | | (C2xC3:D4).145C2^2 | 192,1033 |
(C2×C3⋊D4).146C22 = C6.82+ 1+4 | φ: trivial image | 96 | | (C2xC3:D4).146C2^2 | 192,1063 |
(C2×C3⋊D4).147C22 = C6.102+ 1+4 | φ: trivial image | 96 | | (C2xC3:D4).147C2^2 | 192,1070 |
(C2×C3⋊D4).148C22 = C2×C4×C3⋊D4 | φ: trivial image | 96 | | (C2xC3:D4).148C2^2 | 192,1347 |
(C2×C3⋊D4).149C22 = Q8×C3⋊D4 | φ: trivial image | 96 | | (C2xC3:D4).149C2^2 | 192,1374 |
(C2×C3⋊D4).150C22 = C2×Q8.15D6 | φ: trivial image | 96 | | (C2xC3:D4).150C2^2 | 192,1519 |